An Explicit Unconditionally Stable Numerical Method for Solving Damped Nonlinear Schrödinger Equations with a Focusing Nonlinearity
نویسندگان
چکیده
This paper introduces an extension of the time-splitting sine-spectral (TSSP) method for solving damped focusing nonlinear Schrödinger equations (NLSs). The method is explicit, unconditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for the normalization of the wave function if linear damping terms are added to the NLS. Extensive numerical tests are presented for cubic focusing NLSs in two dimensions with a linear, cubic, or quintic damping term. Our numerical results show that quintic or cubic damping always arrests blowup, while linear damping can arrest blowup only when the damping parameter δ is larger than a threshold value δth. We note that our method can also be applied to solve the three-dimensional Gross–Pitaevskii equation with a quintic damping term to model the dynamics of a collapsing and exploding Bose–Einstein condensate (BEC).
منابع مشابه
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملEfficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations
In this paper, we present efficient, unconditionally stable and accurate numerical methods for approximations of the Klein–Gordon–Schrödinger (KGS) equations with/without damping terms. The key features of our methods are based on: (i) the application of a time-splitting spectral discretization for a Schrödinger-type equation in KGS, (ii) the utilization of Fourier pseudospectral discretization...
متن کاملA distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations
The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative of Caputo type with order and scale index . We es...
متن کاملAn assessment of a semi analytical AG method for solving two-dimension nonlinear viscous flow
In this investigation, attempts have been made to solve two-dimension nonlinear viscous flow between slowly expanding or contracting walls with weak permeability by utilizing a semi analytical Akbari Ganji's Method (AGM). As regard to previous papers, solving of nonlinear equations is difficult and the results are not accurate. This new approach is emerged after comparing the achieved solutions...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 41 شماره
صفحات -
تاریخ انتشار 2003